Software Constructs And Tools
This is an 18-week course in which we aim to provide you with an awareness ol a wide range of problems within computing, the way problems and solutions can be modeled and techniques to solve them. Introducing you to the concept of a business model and how this can be incorporated within a spreadsheet to model current and future situations. You will also get the chance for some programming in C++. To achieve this course the following objectives must be met:

1.
Investigate problem solving theory, applications and techniques

a)
Apply a range of problem-solving techniques to both well-defined and ill-defined problems.

b)
Extract the elements relevant to the solution in an ill-defined problem.

c)
Identify a problem as being typically suitable for solution by computer, and the kind of software appropriate for that problem.

d)
Documentation and Investigation of the proposed solution.

2.
Develop business models using spreadsheets

a)
Create and manipulate models using a spreadsheet

b)
Use a spreadsheet to perform what-if calculations

c)
Use a spreadsheet to produce coherent summaries of a large calculation or large data set and be able to interpret that summary

d)
Test and document a spreadsheet

3.
Design and develop code using an appropriate programming methodology.

a)
Identify and select appropriate pre-defined data types and use simple input/output and appropriate operators with them

b)
Identify and use appropriate selection structures and loop structures for a given task

c) Follow good programming standards

PROBLEM-SOLVING THEORY

•
Newell and Simon’s Human Problem Solving (1972) characterization of what a “problem” is “A person is confronted with a problem when he wants something and does not know immediately what series of actions he can perform to get it”

•
So “problem solving” can be defined as follows (borrowing Newell & Simon’s expressions):

The process of coming up with a “series of actions” that enables the person to get “what he [or she] wants” (~ achieve his/her goal)

Examples of “Problem Solving”

“Problem solving” is everywhere....

•
Trying to figure out how to complete all the errands in one morning

•
Trying to figure out the best strategy for the company

•
Trying to prevent wars in problematic regions of the world

Also, so-called brainteasers. ...

•
The 4 Queens problems

•
A Water Jug Problem

Well-Defined and Ill-Defined Problems

•
Some problems are “well-defined,” but others are less so

· e.g., Solving an eight-tile puzzle vs. writing a book about world peace

•
What is the difference between well-defined and ill-defined problems?

· Well-defined problems:-

•
The goals are clearly understood

•
The steps to achieve the goal are easily identifiable

•
The environment in which the problem resides is usually static

· Ill-defined problems:-

•
The goals are often unclear

•
The steps to achieve the goal are usually not as obvious

•
The environment in which the problem resides is often dynamic

•
Most of problem solving research has focused on well-defined problems

· Back-Tracking Algorithms (Al technique for searching)

· Hungarian Method (Used for solving assignment problems)

· The Simplex Method (Used for solving linear programs in Operations Research)

Algorithms and Heuristics

· Algorithm

· A procedure that, if followed correctly, guarantees that the solver reaches the goal state

•
e.g., following a well-specified cooking recipe

· It may not necessarily be the most efficient way to solve a problem under some situations

•
e.g., finding the right combination for a combination lock (0-0-0, 0-0-1, 0-0-2, etc.)

•
Heuristic

· A “rule of thumb? for solving problems or reasoning

· It does not guarantee that the correct solution will be reached

•
Research has focused on finding general problem-solving heuristics

We can easily create algorithms for solving some well-defined problems using simple techniques like stepwise refinement (or problem decomposition).

Stepwise Refinement

Problem:

A coffee machine uses 1p, 2p, 5p, 10p, 20p, 50p and £1 coins and for the sake of this problem has an unlimited supply of these coins. If I order a coffee at 27p and use a £1 coin what will be the least amount of coins I will be given as change.

For the specific problem we would work it out like this:​

£1
-
27p
=
73p

73p
-
50p
=
23p

23p
-
20p
=
3p

3p
-
2p
=
1p

1p
-
1p
=
0

(Change = 50p, 20p,2p and a 1p

But using stepwise refinement we can make the algorithm more general and make it possible for any priced drink.

1.
Get price of drink

2.
Get amount of money entered

3.
Calculate the amount of change

4.
Give Change

As you see this is general description of our problem but we can break it down even more and get a slightly more detailed algorithm.

1
Get price of drink

2
Get amount of money entered

3
Calculate the amount of change

3.1
Take price of drink away from money entered

4
Give Change

4.1
Calculate coins to give

4.2
Give Coins

We can now refine or decompose each step again and get the following steps

1
Get price of drink

2
Get amount of money entered

3
Calculate the amount of change

3.1
Take price of drink away from money entered

4 Give Change

4.1
Calculate coins to give

4.1.1
While Money Left

4.1.2
Find Largest Coin

4.1.3
Calculate remaining change

4.1.4
While End

4.2
Give Coins

This still does not give us the full algorithm that we require and the problem needs to decomposed again.

1
Get price of drink

2
Get amount of money entered

3
Calculate the amount of change

3.1
Take price of drink away from money entered

4 Give Change

4.1
Calculate coins to give

4.1.1
While Money Left

4.1.2
Find Largest Coin

4.1.2.1
Find largest coin <= change

4.1.3
Calculate remaining change

4.1.3.1
Change = Change — largest coin

4.1.4
While End

4.2
Give Coins

We now have the full algorithm that we can use to solve this kind of problem

1.
Get price of drink

2.
Get amount of money entered

3.
Take price of drink away from money entered

4.
While money left

5.
Find largest coin <= change

6.
change = change - largest coin

7.
While end

8.
Give coins

